当前位置: 绝缘栅 >> 绝缘栅前景 >> 如何进行IGBT双脉冲测试
RIGOLIGBT双脉冲测试应用
引言
功率半导体器件本质是利用半导体的单向导电性改变电路中的电压、电流、频率、导通状态等物理特性,实现电源开关和电力转换等管理。功率半导体种类较多,根据可控性可分为不可控型(二极管)、半可控型(晶闸管)及全控型(IGBT、MOSFET为主)。其中IGBT(绝缘栅双极晶体管)被广泛应用于中、高电压及大电流场合的功率半导体器件。它综合了MOSFET和双极晶体管的优点,具有导通压降低、开关速度快、电流和电压定额高等特点,被广泛应用于变频器、电动汽车、可再生能源发电等领域。
图1:IGBT模块IGBT测试通常分为静态参数测试和动态参数测试两大类。静态参数测试主要是对IGBT在静态(即开关状态不变)条件下的电气特性进行测试,常见的测试项目有门极阈值电压(VGE(th))、门极截止电压(VGE(off))、集电极-发射极饱和电压(VCE(sat))等;动态参数测试主要评估IGBT在开关过程中的性能,包括开关时间、能量损耗等,常见测试项目是开关时间(tf,tr)、开关能量(Eon,Eoff)等等。
双脉冲测试时IGBT中动态参数测试中最常用的测试方法工程师为了能够评估和选择最适合IGBT模块,优化驱动电路和散热设计,提高系统的效率和可靠性,并在设计和研发阶段发现潜在的问题,避免在实际应用中出现故障,通常会进行双脉冲测试。通过这种测试,可以评估IBGT模块的性能和可靠性。
测试挑战
双脉冲测试电路如图所示。被测对象为下桥臂的的IGBT和上桥臂的二极管。负载电感与上桥臂的IGBT、二极管并联,上桥臂的IGBT的门极上加上负电压保证上桥臂IGBT是关断的。测试时用示波器观察开关波形并测量开关参数,高压隔离探头测量栅极和发射级间电压,即Vce;电流探头测量流经发射级的电流,即Ic;低压探头测量栅极的驱动信号,即栅极与发射级间电压,即Vge。
图2:双脉冲测试原理图对被测器件施加两个脉冲驱动信号,在第一个脉冲达到设定电流后关断IGBT,观测待测器件的关断过程;随后在第二个脉冲的上升沿观测待测器件的开通过程,典型双脉冲波形如下图所示:
图3:双脉冲波形
从如上图波形图可以看出双脉冲测试基本经过4个阶段:
T0时刻,IGBT的门极收到第一个脉冲所以饱和导通,电容的电动势加在电感L上,电感电流线性上升,通过调节第一个脉冲时间也就是IGBT导通时间可以控制电流大小,并再次之后脉冲结束IGBT关断。
T1时刻,IGBT关断,电流探头测试位置处没有电流,所以示波器上测试电流为0。由于寄生电感的原因在关断瞬间Vce会产生电压尖峰。
T2时刻,IGBT接收到第二个脉冲再次导通,上桥臂二极管反向恢复导致反向恢复电流穿过IGBT,反向恢复电流和电感L的电流叠加产生电流尖峰。
T3时刻,第二个脉冲结束,IGBT再次关断,因为杂散电感的原因会产生电压尖峰。
在测试过程中我们需要关心测试中电压电流的异常震荡、反向恢复时间、上升时间、关断/开通时间等参数,测试过程中会使用示波器、信号源设备完成测试,完成这些测试对测试设备也提出一些要求:
高压测试下的带宽和通道数:IGBT器件每一次的通断和关断都伴随着快速变化的高压降低到0,需要测试设备在高压测试有足够的带宽准确的测试上升时间。同时一次测试需要完成同时测试Vge、Vce和Ic,至少具备3通道满足测试。
精确捕获电压尖峰和异常震荡:在测试中通常会因为寄生电感等其他原因产生脉宽较窄的电压尖峰,评估关断电压尖峰应力,需要设备能准确的采集窄过冲。在测试过程中工程师会
转载请注明:http://www.aideyishus.com/lkcf/7654.html