当前位置: 绝缘栅 >> 绝缘栅优势 >> 中国科学院院士张跃探索与硅基技术兼容的新
「本文来源:中国电子报」
“
编者按:随着集成电路晶体管密度越来越接近物理极限,单纯依靠提高制程来提升集成电路性能变得越来越困难。围绕如何发展“后摩尔时代”的集成电路产业,全球都在积极寻找新技术、新方法和新路径。为进一步推动中国集成电路在后摩尔时代的技术创新、加速产业发展,特推出相关领域院士访谈,探讨后摩尔时代半导体产业的发展方向。
”
几十年来,集成电路产业一直遵循摩尔定律高速发展,制程节点正在逐渐向3纳米演进。但是,受技术瓶颈和研制成本剧增等因素影响,摩尔定律正逼近极限。在后摩尔时代,谁会成为未来集成电路的技术方向呢?近日,中国科学院院士张跃接受了《中国电子报》记者专访。
新型关键半导体材料研制是未来主要技术发展方向之一
记者:随着后摩尔时代的演进,您认为延续摩尔定律的技术主要有哪些?
张跃:过去的半个多世纪,摩尔定律成功地促进了半导体科学、工业技术与社会资本的深度融合,刺激了集成电路产业的飞速发展,也加速了人类从信息时代跨向人工智能时代的前进脚步。然而随着尺寸微缩极限的到来,集成电路通过直接缩小沟道尺寸实现高集成度和高数据处理能力都面临着巨大的挑战。随着集成电路从平面制造技术向三维制造技术发展,工艺复杂性以及制造成本显著增加,集成电路制造技术进入了后摩尔时代。当前,人们正在从软件架构、硬件结构、连接方式以及新材料制造等多方面努力寻找延续摩尔定律的方法。
从产业的角度看,目前集成电路的先进制程已经进入7纳米和5纳米工艺节点。然而,随着极紫外(EUV)曝光技术等复杂制造工艺的引入和系统设计难度的增加,集成电路制造成本显著提升。
从材料科学的角度看,传统硅基材料在尺寸微缩极限下遇到的关键挑战,是造成集成电路工艺复杂性和系统设计难度显著提升的重要因素。首先,随着晶体管集成度的提高,处于晶体管结构中的沟道半导体材料(如硅、锗等)厚度减小到了10纳米数量级,仅有几十个原子大小。在这种情况下,量子限域效应会导致传统半导体材料的电学性能显著衰退,当达到一到两个纳米的极限尺寸时,硅、锗等传统半导体材料的迁移率都会接近零,成为不导电的绝缘体,无法实现晶体管的基本功能。
其次,传统晶体管半导体器件的主要结构是异质结构。晶体管中涉及的材料很多,包括半导体材料、氧化物材料、金属材料。一般地,采用外延生长工艺将两种材料连接起来构成异质结构。然而在两种材料连接的界面处,由于原子的大小和结合方式都不一样,会产生很多没有成键的电荷散射中心。随着尺寸减小,这些电荷散射中心的不良影响显著增加,晶体管中电荷传输效率低,需要更大的工作电压驱动,导致器件功耗无法降低。
因此,如何克服尺寸微缩极限下传统半导体材料性能衰退和异质结器件功耗大的瓶颈问题,是延续后摩尔定律的主要途径之一。从目前的发展情况看,在未来的一段时间内,通过研发更高精度的工艺制造技术和更加优化的器件与系统架构的硅基集成电路仍然是主导全球集成电路发展的关键技术路线。但是,未雨绸缪,瞄准下一代工艺技术节点,研究可以弥补硅基技术路线中传统半导体材料性能的短板,研制新型关键半导体材料将是未来重要的技术路线之一。
为此,美、日、韩、欧盟等国家和地区以及Intel、IBM、IMEC、三星、台积电等主要厂商在未来技术路线中均把研发新型关键半导体材料作为重要的发展方向之一。我国也在聚焦高端芯片、集成电路装备和工艺技术、集成电路关键材料等关键核心技术的研发。
后摩尔时代,全球科技界和产业界都处在积极探索和寻找下一代关键半导体材料的十字路口前。时不我待,紧紧抓住这个重大机遇期,突破新型关键半导体材料的技术瓶颈,将为我国引领未来科技与产业变革打下坚实基础。
石墨烯晶体管集成电路的发展仍然面临着巨大挑战
记者:石墨烯技术在集成电路上有没有发展前景?
张跃:在人类社会的科技进步和产业发展中,碳材料家族一直起着举足轻重的作用,比如煤炭是人类使用的主要能源之一,石墨是优秀的润滑、导热材料,碳纤维材料是工业制造和纺织品等领域的重要战略材料。几乎每一种碳材料的发现都会引起从科学到产业领域的广泛
转载请注明:http://www.aideyishus.com/lkgx/3700.html