当前位置: 绝缘栅 >> 绝缘栅资源 >> 轻松读懂MOS管的工作原理
MOS管基本知识:
MOS管是一种利用电场效应来控制其电流大小的半导体三端器件,很多特性和应用方向都与三极管类似。这种器件不仅体积小、质量轻、耗电省、寿命长、而且还具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强等优点,应用广泛,特别是在大规模的集成电路中。
根据导电沟道的不同,MOS管可分为N沟道和P沟道两类,每一类又分为增强型和耗尽型两种。现在以N沟道器件为例来介绍一下MOS管的工作原理。
MOS管的结构:
如下图所示,N沟道增强型MOS管的结构示意图。它以低掺杂的P型硅材料作衬底,在上面制造两个高掺杂的N型区,分别引出两个电极,作为源极s和漏极d,在P型衬底的表面覆盖一层很薄的氧化膜(二氧化硅)绝缘层,并引出电极作为栅极g。这种场效应管的栅极g和P型半导体衬底、漏极d及源极s之间都是绝缘的,所以也称为绝缘栅场效应管。
工作原理:
MOS管的基本工作原理是利用栅源电压去控制漏极电流,但漏极和源极之间不存在原始导电沟道,所以工作时还需要先建立。
1.建立导电沟道:
如图所示,当外加正向的栅源电压VGS0时,在栅极下方的氧化层上出现上正下负的电场,该电场将吸引P区中的自由电子,使其在氧化层下方聚集,同时会排斥P区中的空穴,使之离开该区域。VGS越大电场强度越大,这种效果越明显。当VGS达到VT时,该区域聚集的自由电子浓度足够大,而形成一个新的N型区域,像一座桥梁把漏极和源极连接起来。该区域就称为N型导电沟道,简称N沟道,而Vt就称为开启电压,VGSVT是建立该导电沟道的必备条件。
2.建立漏极电流:
当沟道建立之后,如果漏极之间存在一定的驱动电压VDS。当漏极电压VDS出现之后,漏极电位高于源极,故VGSVGD,所以造成氧化层上的电场分布不均匀,靠近源极强度大,靠近漏极强度弱,相应的导电沟道也就随之变化:靠近源极处宽,靠近漏极处窄。
所以,MOS管的漏极电流Id主要受电压VGS和VDS的影响,前者通过控制导电沟道来影响Id,后者直接作为驱动来影响Id。但需要再次强调,如果导电沟道没有建立的话,只有VDS,漏极电流是不会出现的。
总结来说,根据MOS管的一个工作原理和特性,不难发现,它与三极管特性极其相似,都可以作为放大器件使用,如构成反向放大器、电压跟随器和电流跟随器等,两种器件构成的放大电路各有优点,MOS管放大电路输入阻抗高、噪声低、三极管放大电路放大能力强,实际应用中常常都是把两者结合使用。