当前位置: 绝缘栅 >> 绝缘栅市场 >> 专利解密捷捷微电发明新型MOSFET
捷捷微电发明的新型沟槽栅MOSFET结构方案,在不需要增加终端的宽度的前提下提高了终端耐压能力,因此能够增大元胞区的有效面积,进而可减小器件的导通电阻,降低器件的导通损耗。
集微网消息,在功率半导体器件领域,现有的沟槽金属氧化物半导体场效应晶体管(MOSFET)通常采用沟槽结构作为终端设备的保护区。
如上图所示,传统结构的终端保护区在第一导电类型漂移区2上设有栅沟槽20,该装置利用多个栅沟槽20的分压作用,来改善芯片外围的局部电场集中效应,从而提升芯片的击穿电压及可靠性。
虽然沟槽结构能够有效提高终端耐压,但对于中压V~V的沟槽MOSFET器件来说,想进一步提高耐压,需增加沟槽的数量,但这样却不利于降低导通电阻。若不增加沟槽数量,当击穿电压达到V以上时,会出现的明显的终端耐压较弱的现象,导致雪崩能力差,可靠性下降等问题。
为解决这些问题,捷捷微电在年12月29日申请了一项名为“一种沟槽MOSFET器件的终端结构及制造方法”的发明专利(申请号:11598537.4),申请人为江苏捷捷微电子股份有限公司。
根据该专利目前公开的相关资料,让我们一起来看看这项技术方案吧。
如上图,为该专利中发明的沟槽栅MOSFET的终端保护区剖面结构示意图,该半导体基板包括N型衬底1和位于其上的N型飘移区2。这种结构的特征在于,N型飘移区内设置有元胞区邻接的过渡区沟槽3和截止沟槽4,这两个沟槽通过缓变结P型阱区5相连接,阱区呈梯度设置且深度逐渐减小,而在阱区的表面,覆盖有绝缘介质6和有源极金属7。
此外,在过渡区沟槽内设有栅氧化层8和栅极导电多晶硅9,截止沟槽内设有截止氧化层10、截止多晶硅11和截止环金属12,截止环金属穿过绝缘介质与N型漂移区接触。在N型漂移区内,安置有P型体区13,其也与源极金属相接触。
对于这种沟槽MOSFET器件的制作,该专利中也公布了一种制作方法,具体如下:
首先,该方案基于包含有N型漂移区的半导体基板上实现,该基板结构如上图所示,上表面为第一主面,下表面为半导体基板的第二主面。对于第一主面,需要在其上淀积氧化层,通过对氧化层的刻蚀来形成图形化的掩蔽窗口。
其次,对N型漂移区进行刻蚀,得到过渡区沟槽和截止沟槽,并去除图形化的掩蔽窗口,在过渡区沟槽和截止沟槽内热生长氧化层,在氧化层上继续淀积多晶硅。当得到多晶硅后,继续对氧化层进行刻蚀,去除掉第一主面上的氧化层和多晶硅,得到位于过渡区沟槽内的栅氧化层和栅极导电多晶硅,同时得到位于截止沟槽内的截止氧化层和截止多晶硅。
之后,再次形成图形化掩蔽窗口,在其遮挡下对第一主面注入P型离子,如上图所示,将P型离子激活并扩散连成一片,在N型漂移区内形成位于终端保护区的缓变结P型阱区5和位于元胞区的P型体区13,然后去除图形化掩蔽窗口。
最后,对第一主面注入N型离子并退火,得到位于P型体区的N型源区14,并在绝缘介质和金属接触孔内淀积金属,通过刻蚀操作得到源极金属和截止环金属。
通过这样的设计,将宽度逐渐减小的图形化掩蔽窗口二作为注入遮挡,进行注入并推阱,使得所有注入区域相互连成一片,形成一个深度呈一定梯度变化的缓变结P型阱区。当器件反向偏置时,由于缓变结P型阱区的深度呈一定梯度变化,使得终端区的缓变结P型阱区几乎完全被耗尽,从而大大提升了器件终端的耐压能力,进而增强了器件的雪崩能力。
以上就是捷捷微电发明的新型沟槽栅MOSFET结构方案,该方案在不需要增加终端的宽度的前提下提高了终端耐压能力,因此能够增大元胞区的有效面积,进而可减小器件的导通电阻,降低器件的导通损耗。
关于嘉勤
深圳市嘉勤知识产权代理有限公司由曾在华为等世界强企业工作多年的知识产权专家、律师、专利代理人组成,熟悉中欧美知识产权法律理论和实务,在全球知识产权申请、布局、诉讼、许可谈判、交易、运营、标准专利协同创造、专利池建设、展会知识产权、跨境电商知识产权、知识产权海关保护等方面拥有丰富的经验。
(校对/holly)